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Question 1.a) What is a linked list? Discuss the algorithms for 
insertion and deletion of values from the start of a linked list. 

Answer.:-   A linked list is a fundamental data structure used in computer science. It's a 

collection of nodes where each node contains data and a reference (or pointer) to the next node 

in the sequence. 

Linked List: A Dynamic Data Structure 

 Definition: A linked list is a linear data structure where elements, called nodes, are 

not stored in contiguous memory locations. Instead, each node contains data and a 

pointer (link) to the next node, forming a chain-like structure. 

 Advantages:  

o Dynamic size allocation: Nodes can be added or removed without pre-

allocating a fixed amount of memory. 

o Efficient insertions and deletions at any position, unlike arrays which require 

shifting elements. 

 Types:  

o Singly linked lists: Each node points to the next node only. 

o Doubly linked lists: Nodes have pointers to both the next and previous nodes. 

Insertion at the Start 

1. Create a new node: Allocate memory for a new node and store the data to be inserted. 

2. Update pointers:  

o Set the new node's next pointer to point to the current head of the list. 

o Update the head pointer to point to the newly added node. 

Deletion at the Start 

1. Check for empty list: If the list is empty, there's nothing to delete. 

2. Update head pointer:  

o Move the head pointer to point to the second node in the list. 

o The original head node is now disconnected from the list and can be deallocated. 

Key Points: 

 Linked lists trade random access for flexibility in insertions and deletions. 

 They are well-suited for applications where frequent insertions and deletions are 

required, such as task queues, undo/redo operations, and dynamic memory allocation. 

 Time complexity for both insertion and deletion at the start is O(1), meaning constant 

time, regardless of the list's size. 
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Question 1.b) Define stacks and what are the applications of 
Stack. 

Answer.:-    Stacks: The LIFO Kings 

A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. 

Imagine a pile of plates: you can only add or remove plates from the top. Elements 

added later sit "on top" and are accessed first, mimicking the "last in" aspect. 

Key characteristics: 

 LIFO order: Only the top element can be accessed and manipulated. 

 Push and Pop operations: Add elements ("push") to the top and remove 

them ("pop") from the top. 

 Limited access: Direct access to specific elements within the stack is not 

possible. 

Applications galore: 

 Undo/Redo: In text editors and other software, stacks enable reverting 

actions by storing previous states. 

 Function calls: When a program calls a function, the return address and 

local variables are pushed onto a stack. When the function returns, they're 

popped, ensuring proper execution flow. 

 Expression evaluation: Stacks help evaluate complex expressions with 

different operator precedence by keeping track of operands and operators in 

the correct order. 

 Web browser history: Navigating back and forth relies on a stack of visited 

pages, enabling us to retrace our steps. 

 Recursion: Recursive functions utilize stacks to store intermediate results 

during their self-calls, facilitating their backtracking and eventual return. 

 Balancing symbols: Stacks can verify if parentheses, brackets, and other 

symbols in an expression are correctly matched. 

 Data conversion: Stacks come in handy for converting expressions between 

different notations (e.g., infix to postfix) for easier evaluation. 

 

Question 2.a) What are Binary trees? How many types of Binary 
trees are there, discuss? 

Answer.:-    
Binary trees are fundamental data structures that resemble, well, trees! Each node 

can have at most two children, connected by "branches," just like a tree stem has 



two primary branches. This hierarchical organization allows for powerful search and 

sorting operations. 

Key features: 

 Nodes: Each node contains data and pointers to its left and right children (or 

null if absent). 

 Root: The topmost node, from which all other nodes descend. 

 Leaves: Nodes with no children, marking the "endpoints" of the tree. 

 

Types galore: 

 

 Full binary trees: Every node has either two children or none. Think of a 

perfectly symmetrical tree. 

 Complete binary trees: All levels are filled except possibly the last, with 

nodes filled from left to right. Picture a lopsided but complete tree. 

 Perfect binary trees: Both full and complete, like a perfectly balanced and 

filled tree. 

 Balanced binary trees: Maintain a roughly equal height for the left and right 

subtrees, ensuring efficient operations. Examples include AVL trees and red-

black trees. 

 Degenerate trees: Nodes only have one child or no children, resembling a 

chain rather than a tree. 

Binary trees power numerous applications, including: 

 Search trees: Efficiently search for data by comparing values at each node 

until the desired element is found. 

 Sorting algorithms: Algorithms like quicksort and mergesort utilize binary 

trees for efficient sorting. 

 Priority queues: Elements are prioritized based on their values, facilitating 

efficient processing based on importance. 

 Expression evaluation: Complex mathematical expressions can be 

evaluated by traversing the tree according to operator precedence. 

 Huffman coding: Optimizes data compression by assigning shorter codes to 

frequently occurring symbols. 

 

Question 2.b) What is a List Structure? Explain Adjacency list and 
Incidence list. 

Answer.:-    
Lists, as the name suggests, are linear data structures that hold an ordered 

collection of elements. They offer efficient random access to any element by index, 



making them incredibly versatile. But when it comes to representing graphs, another 

type of list structure takes center stage. 

Graph Representation: 

A graph consists of nodes (vertices) and connections (edges) between them. 

Representing this relationship efficiently is crucial for tasks like pathfinding and 

connectivity analysis. Here's where adjacency lists and incidence lists come in. 

Adjacency List: 

Imagine a whiteboard with each node listed down. Now, next to each node, write 

down all its directly connected neighbors. That's essentially an adjacency list! It's 

essentially an array of linked lists, where each list stores the neighbors of a specific 

node. 

Pros: 

 Efficient space usage for sparse graphs (fewer edges than nodes). 

 Quick retrieval of all adjacent nodes for a specific node. 

Cons: 

 More complex to check if there's an edge between two arbitrary nodes. 

 Not ideal for dense graphs (many edges compared to nodes). 

Incidence List: 

Think of a table with rows for nodes and columns for edges. Each cell indicates 

whether a node is connected to an edge (marked 1) or not (marked 0). It's like a 

detailed attendance sheet for edges, recording their participation with every node. 

Pros: 

 Easy to check if there's an edge between any two nodes. 

 Efficient for dense graphs. 

Cons: 

 Requires more space compared to adjacency lists for even moderately sparse 

graphs. 

 Finding all adjacent nodes for a specific node is slower. 

Choosing the Right Tool: 

The choice between adjacency and incidence lists depends on your specific needs: 

 If space is a premium and your graph is likely sparse, an adjacency list might 

be ideal. 

 If checking for connections between any two nodes is crucial, or your graph is 

dense, an incidence list might be better. 

 

 

 

 



 

Question 3.) Discuss the types of directed graphs and their matrix 
representation. 

Answer.:-   
Directed graphs, unlike their undirected counterparts, involve edges with a 

designated direction, forming a flow of information or influence between nodes. This 

directional aspect adds another layer of complexity and opens doors to diverse 

applications. Let's explore the different types of directed graphs and their 

representation through matrices: 

1. Acyclic Directed Graphs (DAGs): 

 No cycles exist, meaning there's no path that starts and ends at the same 

node, following edges in their designated direction. 

 Useful for representing dependencies, precedence relations, and workflows, 

as the order of processing nodes is inherent. 

 Matrix representation: A binary adjacency matrix is sufficient, with non-zero 

entries indicating directed edges. 

2. Cyclic Directed Graphs: 

 Cycles exist, allowing paths that lead back to the starting node. 

 Represent systems with feedback loops, recurrent processes, and state 

machines. 

 Matrix representation: Requires more complex matrices like:  

o Adjacency matrix with powers: Entries denote the number of paths of 

specific length between nodes. 

o Laplacian matrix: Eigenvalues reveal information about the graph's 

structure and potential cycles. 

3. Tournament Graphs: 

 Every pair of nodes is connected by exactly one directed edge (either towards 

or away from each other). 

 Model competitive scenarios, ranking systems, and social networks with 

dominance relationships. 

 Matrix representation: An adjacency matrix with ±1 entries for directed edges 

and 0 for absent edges captures the pairwise dominance information. 

4. Bipartite Graphs: 

 Nodes are divided into two distinct sets, and edges only connect nodes 

between these sets. 

 Model relationships between two different types of entities, like students and 

courses, actors and movies, or buyers and sellers. 



 Matrix representation: A binary adjacency matrix is efficient, showing 

connections between sets but no connections within each set. 

5. Multipartite Graphs: 

 Nodes are partitioned into multiple distinct sets, and edges can connect nodes 

across any of these sets. 

 Model complex interactions between several different types of entities in a 

system. 

 Matrix representation: Requires a higher-dimensional adjacency matrix 

(tensor) where each entry denotes connections between specific sets. 

Understanding Matrix Representations: 

 Adjacency matrices are the most common, with entries indicating the 

presence or absence of directed edges. 

 Other matrices, like the Laplacian and incidence matrices, provide additional 

information about the graph's structure and connections. 

 Matrix operations and analysis techniques can be applied to directed graphs 

represented in these matrices, enabling efficient computation of properties like 

reachability, shortest paths, and network flows. 

 
 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



Question 4.a.) Explain the algorithms of Bubble sort and Binary 
Search. 

Answer.:-   
Bubble Sort: 

 Visualizing the Bubbles: Imagine a list of numbers like bubbles in a tube. 

Bubble sort repeatedly compares adjacent bubbles, swapping them if they're 

in the wrong order. Larger bubbles "float" to the top, while smaller ones "sink" 

to the bottom. 

 Algorithm Steps:  

1. Iterate through the list, comparing each element with its next neighbor. 

2. If the current element is greater than its neighbor, swap them. 

3. Repeat steps 1 and 2 for every element in the list, except the last one 

(which is already in its correct position). 

4. Continue this process for multiple passes until no swaps occur in a 

pass, indicating the list is sorted. 

 Time Complexity: In the worst and average cases, bubble sort has a time 

complexity of O(n^2), meaning its execution time grows quadratically with the 

input size. This makes it inefficient for large datasets. 

 Best Case: If the list is already sorted, bubble sort only needs one pass, 

resulting in a time complexity of O(n). 

 Simplicity as Strength: Despite its inefficiency, bubble sort is often taught due 

to its conceptual simplicity and ease of implementation. 

Binary Search: 

 Divide and Conquer: Binary search efficiently finds a target value within a 

sorted array by repeatedly dividing the search space in half. It's like playing a 

guessing game with perfect hints! 

 Algorithm Steps:  

1. Start with the middle element of the array. 

2. Compare the target value with the middle element. 

3. If they match, the target is found. 

4. If the target is smaller, discard the right half of the array and repeat the 

process on the left half. 

5. If the target is larger, discard the left half and repeat on the right half. 

6. Continue this process until the target is found or the search space is 

exhausted. 

 Time Complexity: Binary search has a time complexity of O(log n), meaning 

its execution time grows logarithmically with the input size. This makes it 

incredibly efficient for large, sorted datasets. 

Set - II 



 Prerequisite: Sorted Array: Binary search relies on the array being sorted. If 

the array is unsorted, it must be sorted first using a suitable algorithm. 

 Efficient Search Master: Binary search is widely used in various applications, 

including database searches, library catalogs, and even game development. 

Key Differences: 
Feature Bubble Sort Binary Search 

Purpose Sorting Searching 

Time Complexity O(n^2) (worst/average), O(n) 

(best) 

O(log n) 

Efficiency Inefficient for large datasets Highly efficient for large, sorted 

datasets 

Input 

Requirement 

Unsorted array Sorted array 

In essence, bubble sort is a simple but inefficient sorting algorithm, while binary 

search is an efficient search algorithm that excels on sorted arrays. Understanding 

their strengths, weaknesses, and appropriate use cases is essential for effective 

problem-solving in computer science. 

 

Question 4.b.) What are NP and NP hard problems? 

Answer.:-   
In the world of computational complexity, NP and NP-hard problems are like 

stubborn puzzles: 

 NP problems: We can verify a solution quickly (in polynomial time) if 

someone finds one, but finding the solution itself might be slow (non-

polynomial time). Think of checking a combination lock: trying many 

combinations is slow, but verifying the right one is instant. 

 NP-hard problems: Not only are they tough to solve themselves, but they're 

also at least as hard as any NP problem! Proving one NP-hard problem can 

be solved quickly would automatically mean all NP problems can be solved 

quickly, which is unlikely. Solving them is like finding a magic key that unlocks 

all other hidden solutions. 

Examples: 

 NP: Traveling Salesman Problem (finding the shortest route to visit all cities), 

Knapsack Problem (choosing the most valuable items within a weight limit). 

 NP-hard: Subset Sum Problem (finding a subset of numbers that adds up to a 

specific target), 3-SAT ( Boolean satisfiability with 3 variables per clause). 

The Big Question: Is there a magic key for all NP problems? We don't know yet! 

Scientists have been searching for decades, but proving or disproving the existence 



of this key (a polynomial-time algorithm for all NP problems) would be a major 

breakthrough in computer science. 

Why do they matter? 

NP and NP-hard problems are like theoretical roadblocks for certain computations. 

Even though some NP problems have practical solutions, understanding these 

complexities helps us: 

 Design efficient algorithms: Knowing a problem is NP-hard helps us focus 

on finding approximate solutions or heuristics that work well in practice, even 

if they're not guaranteed to be the absolute best. 

 Focus resources: Knowing some problems are likely unsolved in polynomial 

time helps us prioritize research efforts towards more realistic goals. 

In essence, NP and NP-hard problems are fascinating theoretical challenges that 

shed light on the limitations and possibilities of computation. While the magic key 

might be out there, the journey to find it is a thrilling intellectual adventure for 

mathematicians and computer scientists alike! 

 

Question 5.a.) How is the Efficiency of an Algorithm measured?  
 

Answer.:-   
Measuring Efficiency: Time and Space 

 Time Complexity: Assesses how long an algorithm takes to run as input size 

increases. Commonly expressed using Big O notation, which focuses on the 

dominant growth rate rather than exact time values.  

o Examples: O(1) for constant time, O(n) for linear time, O(n^2) for 

quadratic time, O(log n) for logarithmic time. 

 Space Complexity: Measures memory usage during algorithm execution. Also 

expressed in Big O notation.  

o Examples: O(1) for constant space, O(n) for linear space usage. 

Factors Affecting Efficiency: 

 Algorithm design: The core algorithm structure and operations significantly 

impact efficiency. 

 Input size: Often, larger inputs lead to longer execution times and potentially 

more memory usage. 

 Hardware: Processor speed, memory capacity, and other hardware 

components influence performance. 

 Programming language and implementation: Choices in language and coding 

practices can affect efficiency. 

Common Efficiency Measures: 



 Execution time: Measured in seconds, milliseconds, or other time units. 

 Number of basic operations: Counting comparisons, assignments, arithmetic 

operations, etc. 

 Memory usage: Measured in bytes or kilobytes. 

Key Considerations: 

 Best, Average, and Worst Cases: Algorithms can have different time 

complexities depending on input characteristics. 

 Trade-offs: Optimizing for time often involves space trade-offs, and vice versa. 

 Asymptotic Analysis: Big O notation provides a theoretical understanding of 

algorithm behavior as input size grows, crucial for comparing different 

algorithms. 

In essence, measuring algorithm efficiency involves analyzing its time and space 

complexity, considering factors like input size, hardware, and implementation details. 

Understanding these measures is essential for choosing the most appropriate 

algorithms for different tasks and optimizing code for performance. 

 

Question 5.b.) What is Divide and conquer strategy? Discuss the 
Quick search algorithm.  

Answer.:-   
Divide and Conquer: A Powerful Problem-Solving Strategy 

 Break it down: Divide a large problem into smaller, more manageable 

subproblems. 

 Conquer individually: Solve each subproblem recursively (by applying the 

same divide and conquer strategy). 

 Combine results: Combine the solutions of the subproblems to form the final 

solution for the original problem. 

Quick Search (Quicksort) Algorithm: A Divide and Conquer Champion 

 Goal: Efficiently sort an array of elements in ascending order. 

 Steps:  

1. Choose a pivot: Select an element from the array (randomly or based 

on certain criteria). 

2. Partition: Rearrange elements so that those smaller than the pivot are 

placed to its left, and those greater are placed to its right. 

3. Divide and Recurse:  

 Recursively apply quick search to the left subarray (containing 

elements smaller than the pivot). 

 Recursively apply quick search to the right subarray (containing 

elements greater than the pivot). 



4. Combine Subarrays: The sorted subarrays, along with the pivot in its 

correct position, form the fully sorted array. 

Why Quick Search Stands Out: 

 Efficiency: Average time complexity of O(n log n), making it one of the fastest 

sorting algorithms for large datasets. 

 Adaptability: Handles a variety of data types and can be optimized for different 

use cases. 

 In-place operation: Doesn't require extra memory for sorting, making it 

memory-efficient. 

Key Considerations: 

 Pivot choice: Affects performance significantly. Random pivot selection 

generally leads to better average-case performance. 

 Worst-case scenario: O(n^2) time complexity if the pivot consistently divides 

the array poorly. 

 Space complexity: O(log n) due to recursive calls, but in-place sorting reduces 

overall memory usage. 

 

Question 6.) Discuss about All Pair Shortest Paths and Travelling 
Salesman Problem. 

Answer.:-   
Shortest Paths and the Traveling Salesman's Odyssey: A Tale of Two Problems 

Both All Pair Shortest Paths (APSP) and the Traveling Salesman Problem 

(TSP) deal with navigating through a network of locations, but with distinct goals and 

complexities: 

All Pair Shortest Paths (APSP): 

 Objective: Find the shortest path between every pair of nodes in a network. 

 Example: Finding the fastest route between all cities in a country for planning 

delivery routes. 

 Applications: GPS navigation, network routing protocols, resource allocation 

problems. 

 Efficient Algorithms:  

o Floyd-Warshall: Dynamic programming approach to compute all pairs 

of shortest paths in O(n^3) time, suitable for dense graphs. 

o Dijkstra's Algorithm: Greedy algorithm that finds shortest paths from a 

single source to all other nodes in O(E log V) time, ideal for sparse 

graphs. 

Traveling Salesman Problem (TSP): 



 Objective: Find the shortest route that visits every node in a network exactly 

once and returns to the starting point. 

 Example: Planning the most efficient itinerary for a sales rep visiting multiple 

cities. 

 Applications: Circuit optimization, scheduling problems, protein folding in 

bioinformatics. 

 NP-Hard Problem: No known algorithm finds the optimal solution in 

polynomial time for large graphs. 

 Approximation Algorithms:  

o Nearest Neighbor: Simple heuristic that visits closest city at each step, 

offering decent approximate solutions but not guaranteed optimal. 

o Genetic Algorithms: Mimic natural selection to evolve candidate 

solutions, often reaching near-optimal routes. 

Key Differences: 

 Scope: APSP finds paths for all pairs, while TSP focuses on a single path that 

visits all nodes. 

 Complexity: APSP has efficient solutions, while TSP is NP-hard, requiring 

approximation algorithms. 

 Applications: APSP serves broader navigational and resource allocation 

needs, while TSP tackles specific circuit optimization problems. 

Connections and Trade-offs: 

 TSP can be transformed into an APSP problem by adding a large cost to the 

edges connecting the starting and ending points. 

 Solving APSP for all pairs involving the starting point in TSP provides 

information about possible legs of the optimal tour. 

 There's a trade-off between solution optimality and computational time: TSP 

prioritizes optimality at the expense of efficient algorithms, while APSP offers 

faster solutions but doesn't guarantee the global optimum for TSP. 
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